Article 3320

Title of the article

ON A METHOD FOR SOLVING THE PROBLEM OF ELECTROMAGNETIC WAVE DIFFRACTION
ON A DIFFRACTION GRATING 

Authors

Gusarova Elena Vasil'evna, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), gusarova.gu@yandex.ru
Smirnov Yuriy Gennad'evich, Doctor of physical and mathematical sciences, professor, head of the sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), mmm@pnzgu.ru
Tsupak Aleksey Aleksandrovich, Candidate of physical and mathematical sciences, associate professor, subdepartment of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), altsupak@yandex.ru

Index UDK

517.958:535.4 

DOI

10.21685/2072-3040-2020-3-3 

Abstract

Background. The aim of the study is to develop a numerical method for solving the problem of diffraction of electromagnetic waves on a two-dimensional periodic diffraction grating.
Materials and methods. A modified method of separation of variables in the region of inhomogeneity is used to solve the problem of diffraction of electromagnetic waves by a two-dimensional periodic diffraction grating.
Results. A modified method of separation of variables in the region of inhomogeneity is presented for solving the problem of diffraction of electromagnetic waves on a two-dimensional periodic diffraction grating.
Conclusions. The proposed numerical method is an effective tool for solving the problem of diffraction of electromagnetic waves on a two-dimensional periodic diffraction grating. 

Key words

electromagnetic waves, diffraction gratings, variable separation method.

 Download PDF
References

1. Shestopalov V. P., Kirilenko A. A., Masalov S. A., Sirenko Yu. K. Rezonansnoe rasseyanie voln. T. 1. Difraktsionnye reshetki [Resonant scattering of waves. Volume 1. Diffraction gratings]. Kiev: Naukova dumka, 1986, 232 p. [In Russian]
2. Shestopalov V. P., Sirenko Yu. K. Dinamicheskaya teoriya reshetok [Dynamic lattice theory]. Kiev: Naukova dumka, 1989, 216 p. [In Russian]
3. Popov E. Gratings: Theory and Numeric Applications. Second Revisited Edition. Institut Fresnel, AMU, CNRS, ECM, 2014, 59 p.
4. Junming Chen et al. Proc. of SPIE. 2017, vol. 10339, pp. 1033–911.

 

Дата создания: 30.11.2020 09:39
Дата обновления: 30.11.2020 09:59